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Abstract
A class of bound-state problems which represents the coupling of a three-
level atom with a two-dimensional system involving two shape-invariant
potentials is introduced. We consider second-order parasupersymmetric
quantum-mechanical models and, using an algebraic formulation for shape-
invariant potential systems, resolve the eigenvalue problem for these coupled
systems considering two possible kinds for the coupling Hamiltonian (linear
and nonlinear in the potential ladder operators). An application is given for a
couple of shape-invariant potentials (harmonic oscillator + Morse potentials).

PACS numbers: 03.65.Ca, 03.65.Fd

1. Introduction

The concept of supersymmetry was first introduced in the early 1970s [1] in the context of
a unifying treatment of bosonic and fermionic parts of the string spectrum and has become
today a field in its own right with many applications to gravity [2], nuclear [3], solid state and
statistical physics [4]. In particular, supersymmetry is inherent in several quantum-mechanical
systems, where it allows one to establish various important properties like degeneracy of the
spectrum, relations between the spectra of different Hamiltonians [5, 6], etc. Supersymmetric
quantum mechanics is usually studied in the context of one-dimensional systems [4]. The
partner Hamiltonians

Ĥ− = − h̄2

2M

d2

dx2
+ V (−)(x) = h̄�Â†Â and Ĥ + = − h̄2

2M

d2

dx2
+ V (+)(x) = h̄�ÂÂ†

(1)

can be written in terms of one-dimensional operators

Â ≡ 1√
h̄�

(
W(x) +

i√
2M

p̂

)
and Â† ≡ 1√

h̄�

(
W(x) − i√

2M
p̂

)
, (2)
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where h̄� is a constant energy scale factor, introduced so that the operators Â and Â† are
dimensionless. The function W(x) is the superpotential which is related to the partner
potentials V (±)(x) via

V (±)(x) = W 2(x) ± h̄√
2M

dW(x)

dx
. (3)

A number of such pairs of Hamiltonians Ĥ± share an integrability condition called shape
invariance [7]. Although not all exactly solvable problems are shape invariant [8], shape
invariance, especially in its algebraic formulation [9–12], proved to be an excellent technique
to investigate exactly solvable systems. Solvable models in quantum theory are so rare that
they are worth studying in their own right. Even though they are simplified, they provide
a clear understanding of physical phenomena involved and can be useful in controlling
various approximations indispensable for treating more realistic cases. In this sense, the
supersymmetric quantum mechanics allied to the shape-invariance concept represent an elegant
and powerful method for obtaining closed analytic solutions for the energy eigenvalues and
eigenfunctions of a set of potential system (such as Coulomb, harmonic oscillator, Morse,
Eckart, Pöschl–Teller, Húlthen, etc) with application in bound states problems common in
many areas of the physics [4].

In the 1950s the so-called parastatistics [13, 14] which generalizes the ordinary Bose
and Fermi statistics introducing the concept of parabosons and parafermions was presented.
In view of the fact that the supersymmetric quantum mechanics provides us with an elegant
symmetry between fermions and bosons, Rubakov and Spiridonov [15] constructed the second-
order parasupersymmetric quantum mechanics of one bosonic and one parafermionic degrees
of freedom as a natural extension of supersymmetric quantum mechanics. Beginning with this
work, parasupersymmetric quantum-mechanical systems have been exploited in many other
studies [14–17], including superconformal algebra generalizations along these lines [18].

In earlier publications [19–22], we introduced a class of supersymmetric and shape-
invariant coupled-channel problems which generalize the Jaynes–Cummings Hamiltonian
[23], a simple model which is extensively used with success in quantum optics [24] where
the radiation, represented by a harmonic oscillator, is coupled to an atom, represented by a
few-level system.

In this paper, we extend to a parasupersymmetric formulation the study about coupled
shape-invariant systems that we began in our previous publications [19, 22]. We consider a
class of parasupersymmetric systems consisting of a shape-invariant two-dimensional system
that is kept in interaction with a three-level atom. For each type of level configuration of the
three-level system we consider two possible forms of coupling: one linear and one nonlinear
in the generalized potential ladder operators. In this context, as a first part of our study, we
present and discuss the models and, by using the algebraic formulation of shape-invariant
systems presented in [9], we obtain explicit expressions for eigenvalues and eigenstates of
the coupled system. Since the dynamics of this kind of coupled system is strongly dependent
on the initial conditions, i.e., on the states in which the shape-invariant potential systems and
the atom are prepared at the beginning, we deferred the study of the quantum dynamics of
the parasupersymmetric coupled system for the second part of this study, to be presented in a
forthcoming paper.

This paper is constructed as follows: In section 2, we review the basic facts of the
algebraic formulation to shape invariance; in section 3, for each type of configuration of the
three-level atom, we present the Hamiltonian of the coupled system, discuss the aspects of its
parasupersymmetric algebra and obtain the eigenvalues and eigenfunctions for each kind of
interaction (linear and nonlinear). In section 4, we apply our generalized results to a couple of



Three-level coupled systems and parasupersymmetric shape invariance 6435

shape-invariant potentials (harmonic oscillator + Morse potentials). Brief conclusions close
the paper in section 5.

2. The algebraic formulation of shape invariant potential systems

The Hamiltonian Ĥ− of equation (1) is called shape-invariant if the condition Â(a1)Â
†(a1) =

Â†(a2)Â(a2) + R(a1) is satisfied [7]. In this equation a1 and a2 represent parameters of the
Hamiltonian. The parameter a2 is a function of a1 and the remainder R(a1) is independent
of the dynamical variables such as position and momentum. As it is written the condition of
equation (5) does not require the Hamiltonian to be one dimensional, and one does not need
to choose the ansatz of equation (2). In the cases studied so far the parameters a1 and a2

are either related by a translation [8, 25] or a scaling [11, 26, 27]. Introducing the parameter
translation operator T̂ ≡ T̂ (a1) and the similarity transformation T̂ Ô(a1)T̂

† = Ô(a2) that
replace a1 with a2 in a given operator [9, 11] and the operators

B̂+ = Â†(a1)T̂ and B̂− = B̂†
+ = T̂ †Â(a1), (4)

the Hamiltonians of equation (1) take the forms Ĥ− = h̄�Ĥ− and Ĥ + = h̄�T̂ Ĥ+T̂
†, where

Ĥ± = B̂∓B̂±. As shown in [9], with these definitions the condition of shape invariance can
be written as the commutation relation

[B̂−, B̂+] = T̂ †R(a1)T̂ ≡ R(a0), (5)

where we used the identity R(an) = T̂ R(an−1)T̂
†
, valid for any n ∈ Z. This commutation

relation suggests that B̂− and B̂+ are the appropriate creation and annihilation operators for
the spectra of the shape-invariant potentials provided that their non-commutativity with R(a1)

is taken into account. The additional relations

R(an)B̂+ = B̂+R(an−1) and R(an)B̂− = B̂−R(an+1) (6)

readily follow from these results. Considering that the ground state of the Hamiltonian Ĥ−
satisfies the condition Â|0〉 = 0 = B̂−|0〉, then, using the relations above it is possible to
obtain the normalized nth excited state of Ĥ−

Ĥ−|n〉 = en|n〉 and Ĥ+|n〉 = {en + R(a0)} |n〉 (7)

from the ground state |0〉 using the relation [11]

|n〉 = K̂n
+|0〉, where K̂+ = 1√

Ĥ−
B̂+. (8)

In this case, the eigenvalues en are given by e0 = 0 and

en =
n∑

k=1

R(ak), for n � 1. (9)

With the results above it is possible to show that [19]

B̂+|n〉 = √
en+1|n + 1〉, B̂−|n〉 =

√
en−1 + R(a0)|n − 1〉

and

T̂ B̂−|n + 1〉 = √
en+1T̂ |n〉. (10)

3. Notation and description of three-level systems coupled with shape-invariant
potentials

3.1. The free atom Hamiltonian

In this study, we treat three interacting systems consisting of a single three-level atom or
molecule simultaneously interacting with two shape-invariant potentials systems. If we
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consider that the eigenstates of the Hamiltonian Ĥ A of a non-interacting three-level atom
Ĥ A|j 〉A = h̄ωj |j 〉A, with j = 1, 2, 3, form a basis then we must have

A〈j |k〉A = δjk and
3∑

j=1

|j 〉AA〈j | = 1̂1. (11)

Therefore using the orthonormality and the completeness relations (11) together with the
eigenvalue equation Ĥ A|j 〉A = h̄ωj |j 〉A, it is possible to write the free atom Hamiltonian in
the form

Ĥ A = 1̂1Ĥ A1̂1 = h̄

3∑
j,k=1

ωk|j 〉AA〈j |k〉AA〈k| = h̄

3∑
j=1

ωj σ̂jj , (12)

where the projection operator σ̂jj ≡ |j 〉AA〈j | describes the population of the level j which
energy is h̄ωj . By assuming a three-dimension spinor representation χj for the eigenstates of
the atom

χ1 ≡ 〈χ |1〉A =

1

0
0


 , χ2 ≡ 〈χ |2〉A =


0

1
0


 , χ3 ≡ 〈χ |3〉A =


0

0
1


 , (13)

it is straightforward to verify that in such representation the Hamiltonian (12) has the matrix
form

ĤA = h̄

3∑
j=1

ωjχjχ
†
j = h̄


ω1 0 0

0 ω2 0
0 0 ω3


 . (14)

3.2. The parasupersymmetric model for � configuration

The case of the two-level system leads to ordinary supersymmetric quantum mechanics [5],
while in the case of non-degenerate multilevel system (three or more levels) correspond to
parasupersymmetric quantum mechanics [15, 16]. In the case of a three-level system there
are three distinct energy level configurations known as � or cascade configuration, � or
Raman configuration and V configuration [28]. These configurations and their transitions are
illustrated in figure 1. The total Hamiltonian describing a three-level system and two shape-
invariant potentials coupled may be written as Ĥ

(X)
T = Ĥ A + Ĥ

(X)
P + Ĥ

(X)
ξ , whereĤ A is the free

atom Hamiltonian (12), Ĥ
(X)
P is the Hamiltonian related with the shape-invariant potentials

system and Ĥ
(X)
ξ is the atom–potentials interaction Hamiltonian. In a parasupersymmetric

study the Hamiltonian Ĥ X = Ĥ
(X)
P +Ĥ

(X)
ξ depends on the possible types of level configurations

(X = �,�, V) and can be expressed in terms of atomic-transition operators σ̂jk ≡ |j 〉AA〈k|
from the level k to the level j (with j, k = 1, 2, 3 and j �= k) and the ladder operators
B̂

(k)
± (k = 1, 2) of the shape-invariant coupling potentials. The collective transition σ̂jk and

projection σ̂jj operators obey the relations

σ̂jkσ̂rs = δkr σ̂js and
3∑

j=1

σ̂jj = 1̂1, (15)

together with the commutation and anticommutation relations

[σ̂jk, σ̂rs] = δkr σ̂js − δjs σ̂rk, {σ̂jk, σ̂rs} = δkr σ̂js + δjs σ̂rk (16)
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Figure 1. The energy level diagrams for the three possible configurations (�, � and V) of a
three-level system. The heating and cooling process of the coupled system, produced with the
action of the parasupercharge operators Q̂1,2 and Q̂†

1,2 in the case of a linear interaction or P̂1,2

and P̂†
1,2 when the interaction is nonlinear, are represented schematically.

characteristic of the generators of the group SU(3). A useful realization of the parafermionic
operators is in terms of 3 × 3 matrices [15, 17]. Therefore, by assuming the three-dimension
spinor representation (13) of the eigenstates of the atomic system the transition operators must
be represented by the matrices

σ̂12 = χ1χ
†
2 =


0 1 0

0 0 0
0 0 0


, σ̂23 = χ2χ

†
3 =


0 0 0

0 0 1
0 0 0


, σ̂13 = χ1χ

†
3 =


0 0 1

0 0 0
0 0 0




(17)

and

σ̂21 = χ2χ
†
1 =


0 0 0

1 0 0
0 0 0


, σ̂32 = χ3χ

†
2 =


0 0 0

0 0 0
0 1 0


, σ̂31 = χ3χ

†
1 =


0 0 0

0 0 0
1 0 0


,

(18)

where σ̂kj = σ̂
†
jk . Actually we can identify the transition matrices σ̂jk(j �= k) with the matrix

representation of the step operators (root vectors) T̂ ±, Û±, and V̂ ± used in the construction
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of the T-, U-, and V -spins su(2) subalgebras. Note that with the atomic-transition-projection
matrices σ̂jk it is possible to obtain the Hermitian traceless Gell–Mann matrices λ̂jk . The
Gell–Mann matrices [29], that generalize the 2 × 2 Pauli matrices σ̂i (i = 1, 2, 3), form a
useful representation of SU(3) group generators for computations in the quark model and in
quantum chromodynamics.

3.2.1. The coupling potentials and the interaction Hamiltonians. We construct the
Hamiltonian Ĥ X based in the requirements imposed by the second-order multidimensional
parasuperalgebra [30] and by the dipole and rotating wave approximations, widely used in
quantum optical models. For each type of configuration, we also consider two possible forms of
interaction which correspond to the shape-invariant generalization of the ordinary or usual and
intensity dependent or nonlinear interaction forms [31] also used in quantum optics. The usual
interaction Hamiltonian is linear in the atom and the coupling potential operators, while the
intensity-dependent one has that expression nonlinear in the coupling potential operators. The
intensity-dependent interaction makes the enhancement of certain quantum effects possible
[32] that would be otherwise difficult to note within the realm of the ordinary interaction
model. We assume that each shape-invariant potential interacts with only one couple of levels
in such a way that direct transitions are allowed between atomic levels 1 and 2 and between
levels 2 and 3, and forbidden between levels 1 and 3. With these assumptions, we introduce
the parasupersymmetric coupling potentials Hamiltonian in a �-type of configuration as

Ĥ
(�)
P = h̄�

{(
Â1Â

†
1 + Â2Â

†
2

)
σ̂11 +

(
Â1Â

†
1 + Â

†
2Â2

)
σ̂22 +

(
Â

†
1Â1 + Â

†
2Â2

)
σ̂33

}
, (19)

where the operators Â1 and Â2 are related, respectively, to the two couples of potentials
V

(±)
1 (x) and V

(±)
2 (y) and satisfy the shape-invariance condition (5). For a usual interaction,

specified when ξ = U, the interaction Hamiltonian is assumed to have the form

Ĥ
(�)
U = h̄g

{(
Â1σ̂23 + Â

†
1σ̂32

)
+

(
Â2σ̂12 + Â

†
2σ̂21

)}
, (20)

while for a nonlinear interaction, specified when ξ = N, it is assumed to be

Ĥ
(�)
N = h̄g

{(
Â1

√
N̂1σ̂23 +

√
N̂1Â

†
1σ̂32

)
+

(
Â2

√
N̂2σ̂12 +

√
N̂2Â

†
2σ̂21

)}
, (21)

where g is the real coupling constant strength and N̂k = Â
†
kÂk with k = 1, 2. Note that if we

take the Hamiltonian Ĥ
(�)
ξ for the harmonic oscillator potential, the simplest shape-invariant

potential, we have the usual and intensity-dependent versions of a three-level atom interacting
resonantly with a two-mode cavity field.

The algebraic formulation for shape-invariant systems presented in section 2 can be
applied in the Hamiltonian Ĥ� by using the B̂

(1,2)
± operators defined by equations (4) with

the introduction of the parameter translation operators T̂ 1 ≡ T̂ 1
(
a

(1)
1

)
and T̂ 2 ≡ T̂ 2

(
a

(2)
1

)
for each shape-invariant potential. Noting that the commutation relations

[
B̂

(k)
± , σ̂ij

] = 0,[
B̂

(k)
∓ , B̂

(j)
±

] = ±Rk(a
(k)
0 )δkj and

[
B̂

(k)
± , B̂

(j)
±

] = 0 are satisfied, where R1
(
a(1)

n

)
and R2

(
a(2)

n

)
are the remainders related with the potentials V

(±)
1 (x) and V

(±)
2 (y), respectively, the final result

can be written as Ĥ� = T̂�ĥ�T̂ †
� if we define the parameter translation inclusive operator

T̂� = T̂ 1T̂ 2σ̂11 + T̂ 1σ̂22 + σ̂33 and decompose the Hamiltonian ĥ� in ĥ� = ĥ
(�)
P + ĥ

(�)
ξ with

ĥ
(�)
P = h̄�

{(
Ĥ(1)

+ + Ĥ(2)
+

)
σ̂11 +

(
Ĥ(1)

+ + Ĥ(2)
−

)
σ̂22 +

(
Ĥ(1)

− + Ĥ(2)
−

)
σ̂33

}
, (22)

where Ĥ(k)
± = B̂

(k)
∓ B̂

(k)
± , with k = 1, 2. The interaction Hamiltonian in the shape-invariant

algebraic formulation for the two cases considered in our study is given by
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ĥ
(�)
U = h̄g

(
B̂

(1)
− σ̂23 + B̂(1)

+ σ̂32 + B̂
(2)
− σ̂12 + B̂(2)

+ σ̂21
)

(23)

ĥ
(�)
N = h̄g

(
B̂

(1)
−

√
Ĥ(1)

− σ̂23 +
√
Ĥ(1)

− B̂(1)
+ σ̂32 + B̂

(2)
−

√
Ĥ(2)

− σ̂12 +
√
Ĥ(2)

− B̂(2)
+ σ̂21

)
. (24)

In this case, we used the fact that N̂k = Â
†
kÂk = Ĥ(k)

− and the unitary property T̂
†
kT̂ k =

T̂ kT̂
†
k = 1̂1, with k = 1, 2.

3.2.2. Parasupersymmetric algebra. Parasupersymmetry transformations of second order
are operations that mix bosonic degrees of freedom with parafermionic variables of order
p = 2. The generators of such transformations satisfy (p + 1)-linear relations that define
structures called parasuperalgebras. The standard supersymmetry transformations correspond
to the case where p = 1. In the case of our coupled system defining the parasupercharge
operators as

Q̂1 = B̂
(1)
− σ̂23, Q̂†

1 = B̂(1)
+ σ̂32 and Q̂2 = B̂

(2)
− σ̂12, Q̂†

2 = B̂(2)
+ σ̂21, (25)

it is possible to rewrite the Hamiltonian in (22) in terms of the anticommutator of these
operators as

ĥ
(�)
P = h̄�

({
Q̂1, Q̂†

1

}
+

{
Q̂2, Q̂†

2

}
+ Q̂12Q̂†

12

)
, (26)

where Q̂12 = B̂
(1)
− σ̂13 + B̂

(2)
+ σ̂31 and Q̂†

12 = B̂
(1)
+ σ̂31 + B̂

(2)
− σ̂13. Using definitions (25) and

expression (26) it is easy to verify the relations

[
Q̂k, ĥ

(�)
P

] = [
Q̂†

k, ĥ
(�)
P

] = 0 and Q̂2
k = (

Q̂†
k

)2 = 0 with k = 1, 2, (27)

Q̂1ĥ
(�)
P = h̄�

(
Q̂1Q̂†

1 + Q̂†
2Q̂2

)
Q̂1, ĥ

(�)
P Q̂†

1 = h̄�Q̂†
1

(
Q̂1Q̂†

1 + Q̂†
2Q̂2

)
, (28)

Q̂2ĥ
(�)
P = h̄�Q̂2

(
Q̂1Q̂†

1 + Q̂†
2Q̂2

)
, ĥ

(�)
P Q̂†

2 = h̄�
(
Q̂1Q̂†

1 + Q̂†
2Q̂2

)
Q̂†

2. (29)

Other triple products of the parasupercharge operators Q̂k and Q̂†
k vanish. The set of

relations (26), (27), (28) and (29) characterizes a two-dimensional generalization of the
parasupersymmetric algebra with the operators Q̂k and Q̂†

k as its generators [30]. On
the other hand, the operators Q̂k and Q̂†

k which change bosonic degrees of freedom into
parafermionic ones and vice versa are related to the parasupercharge operators Q̂ and Q̂†

by Q̂ = 1√
2

(
Q̂

†
1 + iQ̂†

2

)
and Q̂† = 1√

2
(Q̂1 − iQ̂2) introduced in the two-dimensional

parasupersymmetric generalization of the Witten supersymmetric Hamiltonian [33]. Note
that Q̂ and Q̂† obey the property Q̂3 = (Q̂†)3 = 0 required for parasupercharge operators of
second order {Q̂p+1 = (Q̂†)p+1 = 0, withp = 2}.

Since in the usual interaction case the Hamiltonian in (23) can be written as

ĥ
(�)
U = h̄g

(
Q̂1 + Q̂†

1 + Q̂2 + Q̂†
2

)
, (30)

then the commutation relations (27) imply that
[
ĥ

(�)
P , ĥ

(�)
U

] = 0. In the nonlinear interaction
case, the Hamiltonian in (24) can be written as

ĥ
(�)
N = h̄g

(
P̂1 + P̂†

1 + P̂2 + P̂†
2

)
, (31)

where the new operators defined as P̂k = Q̂k

√
Ĥ(k)

− and P̂†
k =

√
Ĥ(k)

− Q̂†
k satisfy the

commutation relations
[
P̂k, ĥ

(�)
P

] = [
P̂†

k , ĥ
(�)
P

] = 0 that imply in the compatibility condition[
ĥ

(�)
P , ĥ

(�)
N

] = 0 of the two Hamiltonians. At this point, we would like to point out that for a
non-interacting system (g = 0) the operators Q̂k and P̂k and their Hermitian adjoint operators
are conserved quantities. To conclude this section, we can say that the parasupercharge operator
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Q̂k and its Hermitian adjoint operator Q̂†
k in the usual interaction Hamiltonian ĥ

(�)
U and the

operators P̂k and P̂†
k in the nonlinear interaction Hamiltonian ĥ

(�)
N are responsible, respectively,

for the heating and cooling process of the coupled system, schematically illustrated in
figure 1.

3.2.3. Eigenstates and eigenvalues. Taking into account the compatibility of ĥ
(�)
P and ĥ

(�)
ξ

and using their relations with Ĥ
(�)
P and Ĥ

(�)
ξ , we find that

[
Ĥ

(�)
P , Ĥ

(�)
ξ

] = T̂�

[
ĥ

(�)
P , ĥ

(�)
ξ

]
T̂ †

� =
0 which proves that the Hamiltonians Ĥ

(�)
P and Ĥ

(�)
ξ share a common set of eigenstates. In

this case to resolve the eigenstates equation Ĥ
(�)
ξ

∣∣	(ξ)
α

〉 = E (ξ)
α

∣∣	(ξ)
α

〉
, we introduce the dressed

states∣∣	(ξ)
α

〉 = T̂�

{
C

(ξ)

1α |n1〉1|m1〉2|1〉A + C
(ξ)

2α |n2〉1|m2〉2|2〉A + C
(ξ)

3α |n3〉1|m3〉2|3〉A
}
, (32)

where C
(ξ)

jα ≡ C
(ξ)

jα

[
R1

(
a

(1)
1

)
, R1

(
a

(1)
2

)
, . . . ;R2

(
a

(2)
1

)
, R2

(
a

(2)
2

)
, . . .

]
are expansion coefficients

which can depend on the remainders Rk

(
a(k)

n

)
. The states |ν〉k , with k = 1, 2, are the eigenstates

(8) of the coupling potential Hamiltonians Ĥ(k)
− with eigenvalues e

(k)
0 = 0 when ν = 0 and

e(k)
ν =

ν∑
j=1

Rk

(
a

(k)
j

)
, for ν � 1. (33)

For the ξ = U interaction case, using the T̂� operator expression, equations (23) and (32) in
the eigenvalue equation and taking into account the operators action (10) on the eigenstates
|ν〉k , we obtain the system of equations


h̄g

√
e
(2)
m2

(
T̂ 1C

(U)
2α T̂

†
1

)
T̂ 1T̂ 2|n2〉1|m2 − 1〉2 = E (U)

α

(
T̂ 1T̂ 2C

(U)
1α T̂

†
2T̂

†
1

)
T̂ 1T̂ 2|n1〉1|m1〉2

h̄g
{√

e
(2)
m1+1

(
T̂ 1T̂ 2C

(U)
1α T̂

†
2T̂

†
1

)
T̂ 1|n1〉1|m1 + 1〉2 +

√
e
(1)
n3 C

(U)
3α T̂ 1|n3 − 1〉1|m3〉2

}
= E (U)

α

(
T̂ 1C

(U)
2α T̂

†
1

)
T̂ 1|n2〉1|m2〉2

h̄g

√
e
(1)
n2+1

(
T̂ 1C

(U)
2α T̂

†
1

)|n2 + 1〉1|m2〉2 = E (U)
α C

(U)
3α |n3〉1|m3〉2.

(34)

Comparing the coupling potential eigenstates |ν〉k in the three equations of (34), we conclude
that we must have

n1 = n2 = n, n3 = n + 1, m1 = m, m2 = m3 = m + 1, (35)

and using these back in (34) we obtain a system of three equation for the coefficients C
(U)
j and

the eigenvalues E (U)
α that can be written in the matrix form MC = 0, where

M ≡




−E (U)
α h̄g

√
e
(2)
m+1 0

h̄g

√
e
(2)
m+1 −E (U)

α h̄g

√
e
(1)
n+1

0 h̄g

√
e
(1)
n+1 −E (U)

α


 and C ≡




T̂ 1T̂ 2C
(U)
1α T̂

†
2T̂

†
1

T̂ 1C
(U)
2α T̂

†
1

C
(U)
3α


 . (36)

The secular equation det M = 0 gives the algebraic equation
(
E (U)

α

)3 − (h̄g)2
{
e
(1)
n+1 +

e
(2)
m+1

}
E (U)

α = 0 the roots of which

E (U)
1nm = +h̄g

√
e
(1)
n+1 + e

(2)
m+1, E (U)

2nm = 0, and E (U)
3nm = −h̄g

√
e
(1)
n+1 + e

(2)
m+1 (37)
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are the eigenvalues of Ĥ
(�)
U . The eigenstates associated with the eigenvalues E (U)

jnm, with
j = 1, 2, 3, are given by∣∣	(U)

jnm

〉 = T̂�

{
C

(U)
1jnm|n〉1|m〉2|1〉A + C

(U)
2jnm|n〉1|m + 1〉2|2〉A + C

(U)
3jnm|n + 1〉1|m + 1〉2|3〉A

}
, (38)

with the coefficients satisfying the conditions

〈
	

(U)
jnm

∣∣	(U)
jnm

〉 = [
C

(U)
1jnm

]2
+

[
C

(U)
2jnm

]2
+

[
C

(U)
3jnm

]2 = 1 (39)

h̄g
(
T̂ 1C

(U)
2jnmT̂

†
1

) = E (U)
jnm√
e
(2)
m+1

(
T̂ 1T̂ 2C

(U)
1jnmT̂

†
2T̂

†
1

) = E (U)
jnm√
e
(1)
n+1

C
(U)
3jnm. (40)

Following the same procedure for the ξ = N interaction case and using equations (24) and
(32) in the eigenvalue equation Ĥ

(�)
N

∣∣	(N)
α

〉 = E (N)
α

∣∣	(N)
α

〉
and taking into account the operators

action (7) and (10) on the |ν〉k coupling potential eigenstates, we obtain a system of equations
similar to (34) but with the coupling potential eigenvalue factors

√
e(k)
ν replaced by e(k)

ν . In
these circumstances it is trivial to show that the eigenvalues are given by

E (N)
1nm = +h̄g

√{
e
(1)
n+1

}2
+

{
e
(2)
m+1

}2
, E (N)

2nm = 0, and E (N)
3nm = −h̄g

√{
e
(1)
n+1

}2
+

{
e
(2)
m+1

}2

(41)

with the associated eigenstates obtained by equation (38) where the coefficients C
(N)
ijnm satisfy

similar conditions presented in equations (39) and (40) but with the replacement
√

e(k)
ν → e(k)

ν

of the coupling potential eigenvalue factors in (40).
Note that the eigenstates

∣∣	(U)
jnm

〉
and

∣∣	(N)
jnm

〉
for the two kinds of the interaction

Hamiltonians Ĥ
(�)
U and Ĥ

(�)
N have the same composition of coupling potential eigenstates

|ν〉k but different expansion coefficients C
(ξ)

ijnm. However, using equations (7), (22) and (38) it

is straightforward to verify that both of them are eigenstates of the Hamiltonian Ĥ
(�)
P with the

same set of eigenvalues

Enm = h̄�
{
e
(1)
n+1 + e

(2)
m+1

}
(42)

in such a way that energy levels of the coupled system are given by E
(ξ)

jnm = Enm + E (ξ)

jnm with

E (ξ)

jnm obtained with (37) and (41) in the ξ = U and ξ = N interaction cases, respectively.
In concluding this section, we observe that by using relations (8) it is possible to obtain

the excited states of the coupled system from a background state by using the expression∣∣	(ξ)

jnm

〉 = K̂
(ξ)

jnm|ψ00〉 with the raising operator K̂
(ξ)

jnm and the background state |ψ00〉 given by

K̂
(ξ)

jnm = T̂�

3∑
i=1

C
(ξ)

ijnm

{
K̂(1)

+

}n{
K̂(2)

+

}m
σ̂ii ,

(43)
|ψ00〉 = |0〉1|0〉2|1〉A + |0〉1|1〉2|2〉A + |1〉1|1〉2|3〉A

and the single potential raising operator defined as

K̂(k)
+ = 1√

Ĥ(k)
−

B̂(k)
+ with k = 1, 2. (44)
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3.3. The parasupersymmetric model for � configuration

3.3.1. The coupling potentials and the interaction Hamiltonians. Within the set of
assumptions presented previously we introduce the Hamiltonian Ĥ� = Ĥ

(�)
P + Ĥ

(�)
ξ which

describe the coupling of a three-level system with two shape-invariant potentials in a �-type
of configuration (see figure 1) where the parasupersymmetric part Ĥ

(�)
P is given by

Ĥ
(�)
P = h̄�

{(
Â1Â

†
1 + Â

†
2Â2

)
σ̂11 +

(
Â1Â

†
1 + Â2Â

†
2

)
σ̂22 +

(
Â

†
1Â1 + Â2Â

†
2

)
σ̂33

}
, (45)

while the interaction Hamiltonian for the two cases that we are considering is assumed with
the forms

Ĥ
(�)
U = h̄g

{(
Â1σ̂23 + Â

†
1σ̂32

)
+

(
Â

†
2σ̂12 + Â2σ̂21

)}
. (46)

Ĥ
(�)
N = h̄g

{(
Â1

√
N̂1σ̂23 +

√
N̂1Â

†
1σ̂32

)
+

(√
N̂2Â

†
2σ̂12 + Â2

√
N̂2σ̂21

)}
. (47)

The algebraic formulation for shape-invariant systems when applied makes possible to
write the Hamiltonian Ĥ� in the form Ĥ� = T̂�ĥ�T̂ †

� if we define the parameter translation
inclusive operator T̂� = T̂ 1σ̂11 + T̂ 1T̂ 2σ̂22 + T̂ 2σ̂33 and decompose the Hamiltonian ĥ� in
ĥ� = ĥ

(�)
P + ĥ

(�)
ξ , where the correspondent parasupersymmetric part is

ĥ
(�)
P = h̄�

{(
Ĥ(1)

+ + Ĥ(2)
−

)
σ̂11 +

(
Ĥ(1)

+ + Ĥ(2)
+

)
σ̂22 +

(
Ĥ(1)

− + Ĥ(2)
+

)
σ̂33

}
(48)

and the interaction part ĥ
(�)
ξ in the two cases is given by

ĥ
(�)
U = h̄g

(
B̂

(1)
− σ̂23 + B̂(1)

+ σ̂32 + B̂(2)
+ σ̂12 + B̂

(2)
− σ̂21

)
, (49)

ĥ
(�)
N = h̄g

(
B̂

(1)
−

√
Ĥ(1)

− σ̂23 +
√
Ĥ(1)

− B̂(1)
+ σ̂32 +

√
Ĥ(2)

− B̂(2)
+ σ̂12 + B̂

(2)
−

√
Ĥ(2)

− σ̂21
)
. (50)

3.3.2. Parasupersymmetric algebra. Using the definition of the parasupercharge operator
Q̂1 presented in (25) and redefining the other two as

Q̂2 = B̂(2)
+ σ̂12, Q̂†

2 = B̂
(2)
− σ̂21

and

Q̂12 = B̂
(1)
− σ̂13 + B̂

(2)
− σ̂31, Q̂†

12 = B̂(1)
+ σ̂31 + B̂(2)

+ σ̂13 (51)

it is possible to write the Hamiltonian ĥ
(�)
P in (48) with the same form (26) in terms of

the parasupercharge anticommutators. Moreover, it is interesting to point out that the set
of relations (27), (28) and (29) which characterizes the two-dimensional generalization of
the second-order parasupersymmetric algebra remains valid. On the other hand, with this
partial redefinition in the parasupercharge operators the Hamiltonian ĥ

(�)
ξ for ξ = U and

ξ = N interaction cases remains with the forms (30) and (31) since we keep the previous P̂1

operator definition and change the P̂2 operator definition by P̂2 =
√
Ĥ(2)

− Q̂2. In both cases the
commutation relations are observed

[
Q̂k, ĥ

(�)
P

] = [
Q̂†

k, ĥ
(�)
P

] = [
P̂k, ĥ

(�)
P

] = [
P̂†

k , ĥ
(�)
P

] = 0

implying as a consequence that
[
ĥ

(�)
P , ĥ

(�)
ξ

] = 0 and thus Ĥ
(�)
P and Ĥ

(�)
ξ share a common set

of eigenstates. The action of the operators Q̂k or P̂k and Q̂†
k or P̂†

k in the heating and cooling
process of the coupled system is illustrated in figure 1.
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3.3.3. Eigenstates and eigenvalues. In this case, the use of the state (32) with the parameter
translation intrinsic operator T̂� and (49) in the eigenstates equation Ĥ

(�)
U

∣∣	(U)
α

〉 = E (U)
α

∣∣	(U)
α

〉
results in the system of equations


h̄g

√
e
(2)
m2+1

(
T̂ 1T̂ 2C

(U)
2α T̂

†
2T̂

†
1

)
T̂ 1|n2〉1|m2 + 1〉2 = E (U)

α

(
T̂ 1C

(U)
1α T̂

†
1

)
T̂ 1|n1〉1|m1〉2

h̄g
{√

e
(2)
m1

(
T̂ 1C

(U)
1α T̂

†
1

)
T̂ 1T̂ 2|n1〉1|m1 − 1〉2 +

√
e
(1)
n3

(
T̂ 2C

(U)
3α T̂

†
2

)
T̂ 1T̂ 2|n3 − 1〉1|m3〉2

}
= E (U)

α

(
T̂ 1T̂ 2C

(U)
2α T̂

†
2T̂

†
1

)
T̂ 1T̂ 2|n2〉1|m2〉2

h̄g

√
e
(1)
n2+1

(
T̂ 1T̂ 2C

(U)
2α T̂

†
2T̂

†
1

)
T̂ 2|n2 + 1〉1|m2〉2 = E (U)

α

(
T̂ 2C

(U)
3α T̂

†
2

)
T̂ 2|n3〉1|m3〉2

(52)

the solution of which, obtained following the same steps of the previous case of the �-type
of configuration, gives the same three eigenvalues E (U)

jnm of equation (37) and the associated
eigenstates∣∣	(U)

jnm

〉 = T̂�

{
C

(U)
1jnm|n〉1|m + 1〉2|1〉A + C

(U)
2jnm|n〉1|m〉2|2〉A + C

(U)
3jnm|n + 1〉1|m〉2|3〉A

}
, (53)

with the expansion coefficients satisfying the normalization condition (39) and the additional
condition

h̄g
(
T̂ 1T̂ 2C

(U)
2jnmT̂

†
1T̂

†
2

) = E (U)
jnm√
e
(2)
m+1

(
T̂ 1C

(U)
1jnmT̂

†
1

) = E (U)
jnm√
e
(1)
n+1

(
T̂ 2C

(U)
3jnmT̂

†
2

)
. (54)

It is not difficult to show that the eigenvalue equation Ĥ
(�)
N

∣∣	(N)
α

〉 = E (N)
α

∣∣	(N)
α

〉
for ξ = N

interaction case must be the same eigenvalues E (N)
jnm obtained in (41) for the �-type of

configuration and the associated eigenstates with the form (53) but with the change
√

e(k)
ν →

e(k)
ν of the coupling potential eigenvalue factors in the expansion coefficient C

(N)
ijnm condition

corresponding to (54). One can easily check that the eigenstates
∣∣	(U)

jnm

〉
and

∣∣	(N)
jnm

〉
for the

two kind of the interaction Hamiltonians Ĥ
(�)
U and Ĥ

(�)
N are eigenstates of the Hamiltonian

Ĥ
(�)
P of (45) with the same eigenvalues Enm given by equation (42).

To conclude this section, we observe that the excited states of the coupled system
∣∣	(ξ)

jnm

〉
can be obtained from the background state |ψ00〉 = |0〉1|1〉2|1〉A + |0〉1|0〉2|2〉A + |1〉1|0〉2|3〉A by
using the expression

∣∣	(ξ)

jnm

〉 = K̂
(ξ)

jnm|ψ00〉 with the raising operator obtained by equation (43)

and the parameter translation inclusive operator given by T̂�.

3.4. The parasupersymmetric model for V configuration

3.4.1. The coupling potentials and the interaction Hamiltonians. The coupling of a three-
level system with two shape-invariant potentials in a V-type of configuration (see figure 1) has
its parasupersymmetric Hamiltonian part given by

Ĥ
(V)
P = h̄�

{(
Â

†
1Â1 + Â2Â

†
2

)
σ̂11 +

(
Â

†
1Â1 + Â

†
2Â2

)
σ̂22 +

(
Â1Â

†
1 + Â

†
2Â2

)
σ̂33

}
, (55)

while the interaction Hamiltonian for the two cases that we are considering now is assumed
with the forms

Ĥ
(V)
U = h̄g

{(
Â

†
1σ̂23 + Â1σ̂32

)
+

(
Â2σ̂12 + Â

†
2σ̂21

)}
(56)

Ĥ
(V)
N = h̄g

{(√
N̂1Â

†
1σ̂23 + Â1

√
N̂1σ̂32

)
+

(
Â2

√
N̂2σ̂12 +

√
N̂2Â

†
2σ̂21

)}
. (57)

When applied in the Hamiltonian Ĥ V = Ĥ
(V)
P + Ĥ

(V)
ξ , the algebraic formulation of

section 2 for shape-invariant systems gives Ĥ V = T̂VĥVT̂ †
V if we define the parameter
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translation inclusive operator T̂V = T̂ 2σ̂11 + σ̂22 + T̂ 1σ̂33 and decompose the Hamiltonian
ĥV in ĥV = ĥ

(V)
P + ĥ

(V)
ξ where

ĥ
(V)
P = h̄�

{(
Ĥ(1)

− + Ĥ(2)
+

)
σ̂11 +

(
Ĥ(1)

− + Ĥ(2)
−

)
σ̂22 +

(
Ĥ(1)

+ + Ĥ(2)
−

)
σ̂33

}
(58)

and the interaction part, in the two forms considered, is given by

ĥ
(V)
U = h̄g

(
B̂(1)

+ σ̂23 + B̂
(1)
− σ̂32 + B̂

(2)
− σ̂12 + B̂(2)

+ σ̂21
)
, (59)

ĥ
(V)
N = h̄g

(√
Ĥ(1)

− B̂(1)
+ σ̂23 + B̂

(1)
−

√
Ĥ(1)

− σ̂32 + B̂
(2)
−

√
Ĥ(2)

− σ̂12 +
√
Ĥ(2)

− B̂(2)
+ σ̂21

)
. (60)

3.4.2. Parasupersymmetry algebra. Keeping the definition of the parasupercharge operator
Q̂2 presented in (25) and redefining the other two as

Q̂1 = B̂(1)
+ σ̂23, Q̂†

1 = B̂
(1)
− σ̂32

and

Q̂12 = B̂(1)
+ σ̂13 + B̂(2)

+ σ̂31, Q̂†
12 = B̂

(1)
− σ̂31 + B̂

(2)
− σ̂13, (61)

the Hamiltonian ĥ
(V)
P in (58) can be written with the same form (26) in terms of anticommutators

and the set of parasupersymmetric algebraic relations (27), (28) and (29) remains valid. The
partial redefinition in the supercharge operators assures that the interaction Hamiltonians ĥ

(V)
U

and ĥ
(V)
N keep the forms (30) and (31) with P̂1 =

√
Ĥ(1)

− Q̂1 and P̂2 = Q̂2

√
Ĥ(2)

− . For both
interaction cases, the Hamiltonians Ĥ

(V)
P and Ĥ

(V)
ξ share a common set of eigenstates since[

Q̂k, ĥ
(V)
P

] = [
Q̂†

k, ĥ
(V)
P

] = [
P̂k, ĥ

(V)
P

] = [
P̂†

k , ĥ
(V)
P

] = 0 which assure that
[
ĥ

(V)
P , ĥ

(V)
ξ

] = 0.

3.4.3. Eigenstates and eigenvalues. With the dressed state (32), the parameter translation
operator T̂V and (59) in the eigenstates equation Ĥ

(V)
U

∣∣	(U)
α

〉 = E (U)
α

∣∣	(U)
α

〉
we obtain the system

of equations


h̄g

√
e
(2)
m2 C

(U)
2α T̂ 2|n2〉1|m2 − 1〉2 = E (U)

α

(
T̂ 2C

(U)
1α T̂

†
2

)
T̂ 2|n1〉1|m1〉2

h̄g
{√

e
(2)
m1+1

(
T̂ 2C

(U)
1α T̂

†
2

)|n1〉1|m1 + 1〉2 +
√

e
(1)
n3+1

(
T̂ 1C

(U)
3α T̂

†
1

)|n3 + 1〉1|m3〉2
}

= E (U)
α C

(U)
2α |n2〉1|m2〉2

h̄g

√
e
(1)
n2 C

(U)
2α T̂ 1|n2 − 1〉1|m2〉2 = E (U)

α

(
T̂ 1C

(U)
3α T̂

†
1

)
T̂ 1|n3〉1|m3〉2

(62)

the solution of which, obtained following the same steps of the previous level configuration
cases, gives the same three eigenvalues E (U)

jnm of equation (37) and the associated eigenstates∣∣	(U)
jnm

〉 = T̂V
{
C

(U)
1jnm|n + 1〉1|m〉2|1〉A + C

(U)
2jnm|n + 1〉1|m + 1〉2|2〉A + C

(U)
3jnm|n〉1|m + 1〉2|3〉A

}
,

(63)

with the expansion coefficients satisfying the normalization condition (39) and the additional
condition

h̄gC
(U)
2jnm = E (U)

jnm√
e
(2)
m+1

(
T̂ 2C

(U)
1jnmT̂

†
2

) = E (U)
jnm√
e
(1)
n+1

(
T̂ 1C

(U)
3jnmT̂

†
1

)
. (64)

As in the two previous configuration types, we find the same eigenvalues E (N)
jnm given by

equation (41) for the eigenvalue equation Ĥ
(V)
N

∣∣	(N)
α

〉 = E (N)
α

∣∣	(N)
α

〉
in the ξ = N interaction
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case. However, the associated eigenstates with the form (63) have its expansion coefficients
C

(N)
ijnm satisfying similar conditions to (64) replacing the coupling potential eigenvalue factors√
e(k)
ν → e(k)

ν . It is trivial to verify that the eigenstates
∣∣	(U)

jnm

〉
and

∣∣	(N)
jnm

〉
for the two kinds of

the interaction Hamiltonians Ĥ
(V)
ξ also are eigenstates of the Hamiltonian Ĥ

(V)
P of (55) with

the same set of eigenvalues Enm given by equation (42) and obtained in the other two types of
configuration.

To close this section, we observe that with the background state |ψ00〉 = |1〉1|0〉2|1〉A +
|1〉1|1〉2|2〉A + |0〉1|1〉2|3〉A it is possible to obtain the excited states of the coupled system∣∣	(ξ)

jnm

〉
by using the expression

∣∣	(ξ)

jnm

〉 = K̂
(ξ)

jnm|ψ00〉 with the raising operator obtained by

equation (43) and the parameter translation inclusive operator given by T̂V.

4. Application for a couple of potentials

To illustrate how our general results can be applied in specific cases we work out in this
section an objective example of a three-level system coupled with a harmonic oscillator
and a Morse potentials. The harmonic oscillator is the simplest among the shape-invariant
potential and appears in the description of the interaction of matter, represented by a few
level atom, with a quantized electromagnetic field, represented by the harmonic oscillator
bosonic operators Â1

(
a

(1)
1

)
and Â

†
1

(
a

(1)
1

)
. On the other hand, one-dimensional Morse potential,

originally introduced as a useful model for the diatomic molecules [34], has been widely used
in many areas of physics to study physics phenomena such as molecular vibrations, laser
chemistry and, in particular, chemical bonds. With the inclusion of the Morse potential it
is possible to evaluate the anharmonic and dissociation effects, related to a more realistic
physical situation, in the coupled system.

In the case of the harmonic oscillator the partner potentials (3) are obtained with the
superpotential W1

(
x, a

(1)
1

) = √
h̄�

(
a

(1)
1 x + ζ

)
, where a

(1)
1 and ζ are real constants, while the

remainders [4] in the shape-invariant condition (5) are given by R1
(
a(1)

n

) = η1
(
a(1)

n + a
(1)
n+1

)
,

where η1 = √
h̄/(2M�). Taking into account that the parameters for this potential are related

by a
(1)
1 = a

(1)
2 = · · · = a(1)

n then the remainders can be written as R1
(
a(1)

n

) = γ , with

γ = 2η1a
(1)
1 , and thus

e(1)
n = nγ. (65)

The supersymmetric partner potentials (3) in the Morse case [4] are obtained with
the superpotential W2

(
y, a

(2)
1

) = √
h̄�

{
a

(2)
1 − e−�y

}
, with a

(2)
1 and � being real constants.

In this case the remainders [4] in the shape-invariant condition (5) are given by R2
(
a(2)

m

) =
η2

(
2a(2)

m − η2
)
, with the potential parameters related by a

(2)
m+1 = a(2)

m − η2, where η2 =√
h̄/(2M�)�. By using these results into (9) we can prove that the bound states are related to

e(2)
m = η2

2m(2κ − m), with m � κ ≡ a
(2)
1

/
η2. (66)

With this couple of potentials the parasupersymmetric Hamiltonians Ĥ P in (19), (45), (55)
and the interactions Hamiltonians Ĥ

(X)
ξ in (20), (21), (46), (47), (56) and (57) for the three types

of configuration of the three level atom must be constructed with the dimensionless operators
Â1

(
a

(1)
1 , x

) = a
(1)
1 x + ζ + iλp̂x , Â

†
1

(
a

(1)
1 , x

) = a
(1)
1 x + ζ − iλp̂x , Â2

(
a

(2)
1 , y

) = a
(2)
1 − e−�y +

iλp̂y and Â
†
2

(
a

(2)
1 , y

) = a
(2)
1 − e−�y − iλp̂y , where λ = 1/

√
2h̄�M . In a matrix form the
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Hamiltonian Ĥ X = Ĥ
(X)
P + Ĥ

(X)
ξ for the usual (ξ = U) interaction case and the three types of

configuration gives

Ĥ� = h̄�




ĥo + h̄λ
(
a

(1)
1 + � e−�y

)
ε
{
a

(2)
1 − e−�y + iλp̂y

}
0

ε
{
a

(2)
1 − e−�y − iλp̂y

}
ĥo + h̄λ

(
a

(1)
1 − � e−�y

)
ε
{
a

(1)
1 x + ζ + iλp̂x

}
0 ε

{
a

(1)
1 x + ζ − iλp̂x

}
ĥo − h̄λ

(
a

(1)
1 + � e−�y

)




(67)

Ĥ� = h̄�




ĥo + h̄λ
(
a

(1)
1 − � e−�y

)
ε
{
a

(2)
1 − e−�y − iλp̂y

}
0

ε
{
a

(2)
1 − e−�y + iλp̂y

}
ĥo + h̄λ

(
a

(1)
1 + � e−�y

)
ε
{
a

(1)
1 x + ζ + iλp̂x

}
0 ε

{
a

(1)
1 x + ζ − iλp̂x

}
ĥo − h̄λ

(
a

(1)
1 − � e−�y

)




(68)

Ĥ V = h̄�




ĥo − h̄λ
(
a

(1)
1 − � e−�y

)
ε
{
a

(2)
1 − e−�y + iλp̂y

}
0

ε
{
a

(2)
1 − e−�y − iλp̂y

}
ĥo − h̄λ

(
a

(1)
1 + � e−�y

)
ε
{
a

(1)
1 x + ζ − iλp̂x

}
0 ε

{
a

(1)
1 x + ζ + iλp̂x

}
ĥo + h̄λ

(
a

(1)
1 − � e−�y

)


 ,

(69)

where ε = g/� and ĥo = λ2
(
p̂2

x + p̂2
y

)
+

(
a

(1)
1 x + ζ

)2
+

(
a

(2)
1 − e−�y

)2
. For the nonlinear

(ξ = N) interaction case, these three Hamiltonians have the matrix form

Ĥ� = h̄�




ĥo + h̄λ
(
a

(1)
1 + � e−�y

)
ε
{
a

(2)
1 − e−�y + iλp̂y

}√
ĥ2 0

ε
√

ĥ2
{
a

(2)
1 − e−�y − iλp̂y

}
ĥo + h̄λ

(
a

(1)
1 − � e−�y

)
ε
{
a

(1)
1 x + ζ + iλp̂x

}√
ĥ1

0 ε
√

ĥ1
{
a

(1)
1 x + ζ − iλp̂x

}
ĥo − h̄λ

(
a

(1)
1 + � e−�y

)




(70)

Ĥ� = h̄�




ĥo + h̄λ
(
a

(1)
1 − � e−�y

)
ε
√

ĥ2
{
a

(2)
1 − e−�y − iλp̂y

}
0

ε
{
a

(2)
1 − e−�y + iλp̂y

}√
ĥ2 ĥo + h̄λ

(
a

(1)
1 + � e−�y

)
ε
{
a

(1)
1 x + ζ + iλp̂x

}√
ĥ1

0 ε
√

ĥ1
{
a

(1)
1 x + ζ − iλp̂x

}
ĥo − h̄λ

(
a

(1)
1 − � e−�y

)




(71)

Ĥ V = h̄�




ĥo − h̄λ
(
a

(1)
1 − � e−�y

)
ε
{
a

(2)
1 − e−�y + iλp̂y

}√
ĥ2 0

ε
√

ĥ2
{
a

(2)
1 − e−�y − iλp̂y

}
ĥo − h̄λ

(
a

(1)
1 + � e−�y

)
ε
√

ĥ1
{
a

(1)
1 x + ζ − iλp̂x

}
0 ε

{
a

(1)
1 x + ζ + iλp̂x

}√
ĥ1 ĥo + h̄λ

(
a

(1)
1 − � e−�y

)


,

(72)

where ĥ1 = λ2p̂2
x +

(
a

(1)
1 x + ζ

)2 − h̄λa
(1)
1 and ĥ2 = λ2p̂2

y +
(
a

(2)
1 − e−�y

)2 − h̄λ� e−�y .
The eigenvalues of the coupled system for the two kind of interactions are given by

E
(U)
jnm = h̄�

{
γ (n + 1) + η2

2(m + 1)(2κ − m − 1)
}

×




+h̄g

√
γ (n + 1) + η2

2(m + 1)(2κ − m − 1) j = 1

+ 0 j = 2

−h̄g

√
γ (n + 1) + η2

2(m + 1)(2κ − m − 1) j = 3

(73)
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and

E
(N)
jnm = h̄�

{
γ (n + 1) + η2

2(m + 1)(2κ − m − 1)
}

×




+h̄g

√
γ 2(n + 1)2 + η4

2(m + 1)2(2κ − m − 1)2 j = 1

+ 0 j = 2

−h̄g

√
γ 2(n + 1)2 + η4

2(m + 1)2(2κ − m − 1)2 j = 3,

(74)

with the correspondent eigenfunctions obtained by 	
(X,ξ)

jnm ≡ 〈
x, y

∣∣	(X,ξ)

jnm

〉 = T̂Xψ
(�,ξ)

jnm with
X= �,�, V, where

ψ
(�,ξ)

jnm =




C
(�,ξ)

1jnmϕn,m(x, y)

C
(�,ξ)

2jnmϕn,m+1(x, y)

C
(�,ξ)

3jnmϕn+1,m+1(x, y)


 , ψ

(�,ξ)

jnm =




C
(�,ξ)

1jnmϕn+1,m(x, y)

C
(�,ξ)

2jnm ϕn+1,m+1(x, y)

C
(�,ξ)

3jnm ϕn,m+1(x, y)


 ,

(75)

ψ
(V,ξ)

jnm =




C
(V,ξ)

1jnmϕn,m+1(x, y)

C
(V,ξ)

2jnmϕn,m(x, y)

C
(V,ξ)

3jnmϕn+1,m(x, y)


 .

The spinor elements ϕµ,ν(x, y) of the eigenfunctions 	
(X,ξ)

jnm are obtained by ϕµν(x, y) =
ϕ(1)

µ

[
a

(1)
1 x + ζ

]
ϕ(2)

ν

[
2κ e−�y

]
, where

ϕ(1)
µ (u) = e−u2/2Hµ(u) while ϕ(2)

ν (u) = e−u/2uα/2Lα
ν (u), with α = 2κ − 2ν − 1

(76)

where Hµ(u) are the Hermite polynomials [35] and Lα
ν (u) are the associated Laguerre

polynomials [35].

5. Conclusions

Exactly soluble and fully quantum-mechanical models are rare. In this paper we introduced,
within a parasupersymmetric formulation, a class of bound-state problems which represents
a three-level atom coupled with a two-dimensional shape-invariant potential system. This
represents a non-trivial coupled-channels problem which may find applications in molecular,
atomic and nuclear physics. Taking into account the three possible configurations of the
three energy level of the atom and two forms of coupling interaction (usual and nonlinear)
we discussed the parasupersymmetric algebra of the models. Using a parasupersymmetric
formulation, we showed that the shape-invariant potentials Hamiltonian Ĥ

(X)
P and the

interaction Hamiltonian Ĥ
(X)
ξ are mutually commuting and thus we obtained the eigenvalues

and the eigenstates of the coupled system. We applied our generalized results for the particular
case of a couple of shape-invariant potentials (harmonic oscillator + Morse potentials).

Because of its relevance an extension the study of the quantum dynamics of the coupled
models, strongly depends on the initial conditions of the system, will be presented in a
forthcoming calculation.
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